

UDC: 611.718.4+616-007.24(616.71-007.157)

DOI: 10.24061/2413-4260. XV.4.58.2025.11

**K. H. Mirzamurodov, A. U. Gafforov,
A. A. Teshayev, A. Z. Isomutdinov**

Bukhara State Medical Institute named after
Abu Ali ibn Sino
(Bukhara, Uzbekistan)

MINIMALLY INVASIVE COUNTER
CORTICOTOMY OF THE DISTAL FEMUR
IN PATIENTS WITH CONGENITAL LOWER
LIMB DISORDERS (WITH PRESERVATION
OF MEDULLARY CANAL STRUCTURES)

Summary.

The increasing demand for orthopaedic correction calls for the refinement of surgical techniques that maximize bone regeneration while minimizing iatrogenic trauma to the medullary canal.

Aim of the study: to evaluate the outcomes of a novel dual-approach femoral corticotomy in patients with hypochondroplasia and achondroplasia.

Materials and methods. A prospective dynamic active study enrolled 40 patients. The cohort was divided into a comparison group (Group 1, n=20) and a study group (Group 2, n=20), comprising pediatric patients aged 7-18 years with polysegmental deformities and lower limb shortening of genetic etiology. Group 1 underwent conventional single-approach corticotomy, while Group 2 received femoral corticotomy through two sequential approaches—minimally invasive counter corticotomy via anteromedial followed by anterolateral access—with mandatory final stabilization using an external fixation system with tension rods or hinge assemblies. Treatment outcomes were assessed according to four parameters: achieved segment lengthening, absence of residual deformity, preserved limb and joint function, and patient-reported satisfaction metrics. The study protocol received ethical approval from the Republican Specialized Scientific and Practical Medical Center of Traumatology and Orthopaedics (Approval No. 8-2023, dated 15 August, 2023). All procedures were conducted in accordance with the World Medical Association's Declaration of Helsinki (2000 amendments). Statistical analysis was performed using Microsoft Excel 2013. Given the sample sizes in the groups, non-parametric statistics were applied with a significance level set at $p \leq 0.05$. Quantitative sample characteristics are presented in the table as the median (25th-75th percentiles) and the number of observations (n), corresponding to the number of step cycles. The statistical significance of differences was determined using the unpaired Wilcoxon test.

Funding: This work was carried out within the framework of the research plan of the Bukhara State Medical Institute (05.2022 DSc.135) entitled «Development of new approaches to early diagnosis, treatment, and prevention of pathological conditions affecting the health of the population of the Bukhara region after COVID-19 (2022-2026)».

Results of the study. In Group 1 (n=20), where classical corticotomy in the distal third of the femur was performed via an anterolateral approach, outcomes were excellent in 85% of patients, good in 5%, and satisfactory in 10%. In Group 2 (n=20), where a dual-approach counter corticotomy preserving the medullary canal was used, outcomes were excellent in 90%, good in 5%, and satisfactory in 5%.

Conclusion. Both techniques achieved careful preservation of the medullary canal structures and yielded a high rate of satisfactory outcomes. The novel dual-approach femoral corticotomy proved to be a viable and effective alternative to the classical technique for patients with hypochondroplasia and achondroplasia.

Keywords: *Vdistraction Osteosynthesis; Ilizarov Method; Osteotomy; Corticotomy; Counter Corticotomy; Polysegmental Osteosynthesis.*

Introduction

Contemporary trauma and orthopaedic surgery is witnessing a steady increase in the number of surgical procedures, driven by a rising incidence of both post-traumatic conditions and congenital musculoskeletal disorders. Achondroplasia, a systemic skeletal dysplasia caused by impaired endochondral growth of long and short tubular bones, is well-characterized in the clinical, radiological, and genetic literature [1-4]. This condition also frequently necessitates surgical management. The critical need for increasing stature in patients with achondroplasia stems from a significant discrepancy between chronological age and height [5-7]. Multidisciplinary research into height augmentation for these patients has concluded that surgical limb lengthening currently remains the only viable treatment option [8-11]. As these procedures involve bone resection, the number of osteotomies performed continues to grow.

The modern orthopaedic operating theatre is equipped with a vast array of osteotomes and chisels of various designs, featuring different blade widths, instruments for low-impact osteotomy, and chisels with protective guards to prevent penetration of the medullary canal [12, 13].

Surgical preference is given to techniques that mitigate risk, enhance outcome predictability, and reduce operating time. Consequently, the development of new instruments and surgical methods remains a priority, with a focus on performing osteotomies that maximize the preservation of the medullary canal structures and the bone marrow, with its rich vascular and neural network.

A meticulously performed femoral osteotomy is crucial for the successful correction of deformities, limb lengthening, and the management of bone defects [14-16]. However, a purely mechanical approach to distraction-compression osteosynthesis using an external fixator, which fails to account for the biology of osteogenic tissues

and causes damage to the bone marrow, often results in compromised outcomes. These include delayed union, non-union, and pseudarthrosis, typically requiring unplanned revision surgeries. This necessitates additional time, financial resources, and healthcare utilization to achieve the desired therapeutic goal [17-20].

Aim of the study: to evaluate the outcomes of a novel dual-approach femoral corticotomy in patients with hypochondroplasia and achondroplasia.

Materials and Methods

The study protocol received ethical approval from the Institutional Review Board of the Republican Specialized Scientific and Practical Medical Center of Traumatology and Orthopaedics (Approval No. 8-2023, dated 15 August, 2023). All procedures were conducted in accordance with the World Medical Association's Declaration of Helsinki (2000 amendments). Statistical analysis was performed using Microsoft Excel 2013. Given the sample sizes in the groups, non-parametric statistics were applied with a significance level set at $p \leq 0.05$. Quantitative sample characteristics are presented in the table as the median (25th-75th percentiles) and the number of observations (n), corresponding to the number of step cycles. The statistical significance of differences was determined using the unpaired Wilcoxon test.

This prospective dynamic active study enrolled 240 patients. A total of 120 patients were assigned to the comparison group (Group 1) and 120 to the study group (Group 2).

The cohort comprised patients aged 7-18 years with polysegmental lower limb deformities secondary

to systemic musculoskeletal genetic disorders. All patients received treatment at the Bukhara Regional Multidisciplinary Medical Center and the G. A. Ilizarov National Medical Research Center for Traumatology and Orthopaedics.

Group 1 (n=20) underwent conventional single-approach femoral corticotomy in the distal third via an anterolateral approach. Approximately three-quarters of the femoral circumference were transected. To complete the corticotomy, mechanical manipulation was employed: either wedging the bone wound with a key or redressing the fragments using the apparatus supports to disrupt the integrity of the remaining quarter of the femoral circumference.

Group 2 (n=20) underwent a dual-approach counter corticotomy designed to preserve the medullary canal structures. This technique involved preliminary sequential drilling of aligned perforations along the planned osteotomy line through both cortical plates. An osteotome with a guiding spike on its cutting edge was then engaged into these pilot holes to sequentially connect them, ensuring precise division of the cortical bone between perforations while avoiding intrusion into the medullary canal.

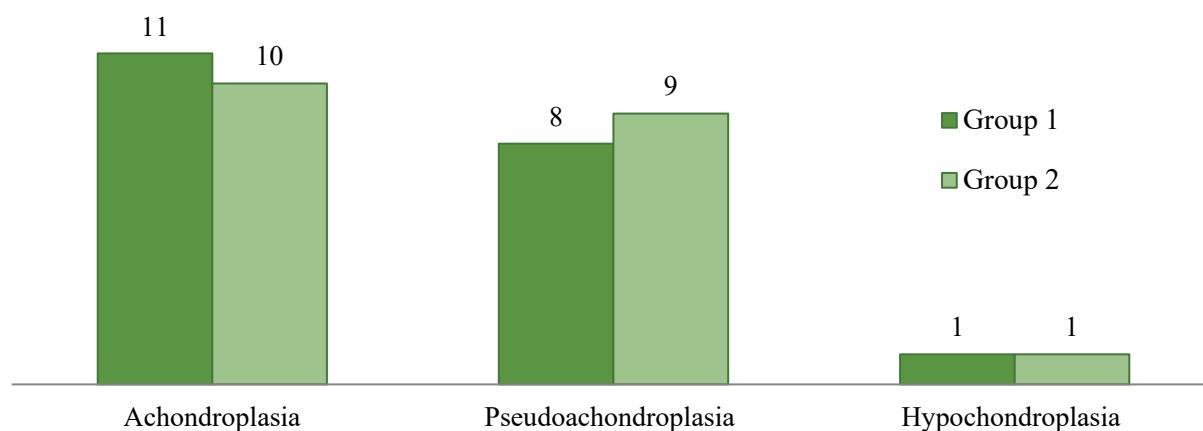
Notably, in some patients with systemic skeletal dysplasias, physeal closure in long tubular bones occurred 3-4 years earlier than in individuals with normal osteogenesis.

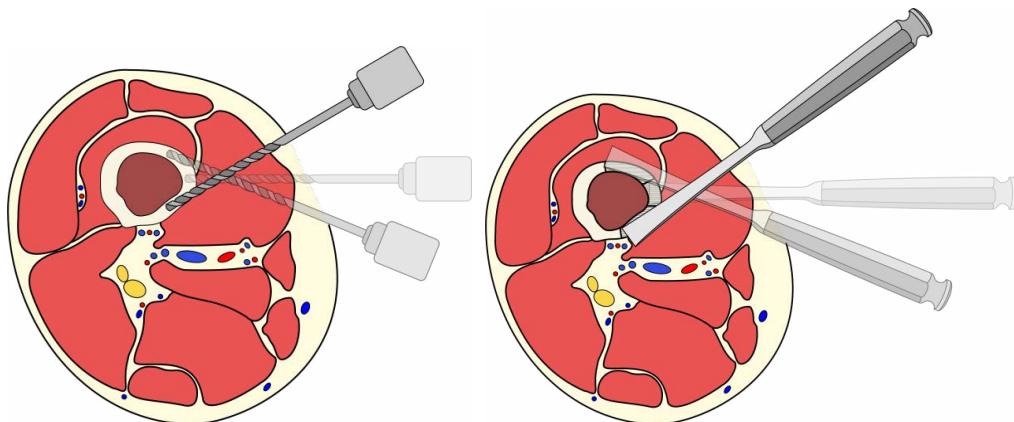
Patient distribution by age is presented in Table 1, and by diagnosis in Figure 1. Achondroplasia and pseudoachondroplasia were the most prevalent diagnoses, while hypochondroplasia was confirmed in only two of the forty cases (5%).

Table 1

Age Distribution of Patients in the Study Groups

Indicators Group 1		7-10 years		11-14 years		15-18 years	
		Group 2	Group 1	Group 2	Group 1	Group 2	
Number of Patients	abs.	7	6	5	7	8	7
	%	35	30	25	35	40	35
Mean Age		8.6±1.3	8.6±1.3	12.1±1.6	12.1±1.6	15.4±0.8	15.4±0.8




Fig. 1. Distribution of patients by nosology.

The corticotomy technique was refined at National Ilizarov Medical Research Center for Traumatology and Orthopaedics to address limitations identified through retrospective analysis. Performing a dual-approach counter corticotomy in the distal femoral third requires standard orthopaedic operating room equipment. The essential instrumentation includes a scalpel, a set of elevators, an orthopaedic hammer, osteotomes or chisels, a power tool (medical drill), drills and trocars of various diameters for corticoperforations.

Surgical Protocol for Dual-Approach Counter Corticotomy of the Distal Femur

As with conventional corticotomy, minimally invasive counter corticotomy begins with femoral osteosynthesis using an external fixation device, with mandatory final frame stabilization employing tension rods or hinge assemblies.

Following frame application, the counter corticotomy level is identified and marked on the skin. Threaded rods in the distal frame segment are temporarily removed during the corticotomy, enabling accurate determination of complete corticotomy across the entire perimeter of the cortical plate. The corticotomy is performed sequentially through two approaches: first via a medial approach, then via a lateral approach. Longitudinal stab incisions up to 8-10 mm are made with a scalpel along the projection of the corticotomy, and access to the femur is created bluntly using an elevator. Prior to the medial corticotomy, corticoperforations are made perpendicular to the bone with a 2.5-3.5 mm drill along the anterior, medial, and posterior surfaces of the cortical plate, avoiding penetration of the drill into the medullary canal (Figure 2).

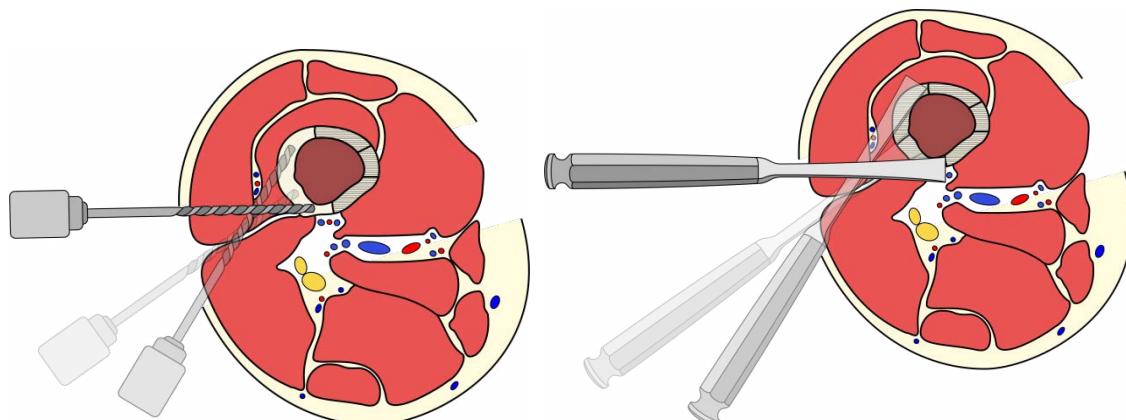


Figure 2. Medial approach for the femoral counter corticotomy technique

Corticoperforation defines the trajectory for the subsequent counter corticotomy, reduces cortical resistance to the osteotome, and prevents undesirable and uncontrolled cortical fracture. Following drilling, a suitably sized osteotome (10-20 mm width, depending on the patient's age) is inserted into the formed access, parallel to the muscle fibers, until it is in full contact with the bone surface. Maintaining tight contact with the bone, initial shallow scoring cuts are made along the cortical plate (in pediatric patients, this maneuver facilitates access under the periosteum and subsequent subperiosteal work). The osteotome is then repositioned perpendicular to the bone, and controlled, short hammer strikes are used to sequentially transect the cortical plates following the previously drilled

trajectory – anterior, medial, and posterior – while preserving the medullary canal. The technique of transecting the cortical plates is similar to the technique of cutting glass or ceramic tiles: initial superficial scoring in all three planes is followed by gradual, deeper osteotome advancement until complete transection of only the cortical plates of the medial part of the femur. This controlled approach prevents osteotome impaction and minimizes the risk of uncontrolled femoral splitting with aberrant fracture propagation.

Following complete medial corticotomy, a corresponding lateral incision is made directly opposite the medial portal along the anterolateral thigh, guided by the skin marking and matched to the medial incision length and the working part of the selected osteotome (Figure 3).

Figure 3. Surgical technique for the anterolateral femoral counter corticotomy

The anterolateral approach mirrors the medial procedure. Blunt dissection with an elevator establishes access to the surface of the femur. A 2.5-3.5 mm drill is used to create corticoperforations perpendicular to the bone along the anterior, lateral, and posterior surfaces of the cortical plate, preserving the medullary canal. The osteotome is inserted following the known rules: first parallel to the muscle fibers until contact with the bone surface, then several cutting movements on the surface of the cortical plate, after which the blade of the osteotome is turned perpendicular to the bone surface. Controlled hammer strikes initiate grooving of the anterior, lateral, and posterior cortical plates, followed by progressive deepening of the osteotomy. The counter corticotomy is usually achieved without a wedging turn of the osteotome with a wrench. The operating surgeon tactilely confirms successful cortical discontinuity through acquired fragment mobility. Verification of the completeness of the counter corticotomy by turning the osteotome with a wrench or by applying counter-rotation to the supports is strongly discouraged, as such maneuvers inevitably traumatize medullary structures and compromise controlled osteogenesis. If incomplete counter corticotomy is suspected, a narrow elevator should be used to identify the area of doubt, followed by careful targeted osteotome application in this location until subtle fragment mobility provides definitive confirmation of the corticotomy completion. Finally, the temporarily removed fixation rods are reinstalled, minimizing the period of fragments instability and preventing their displacement. The pre-contoured rods facilitate automatic reduction if minor displacement has occurred.

Treatment outcomes were categorized as excellent, good, and poor (unsatisfactory). An excellent result required a predictable osteotomy performed along the intended line, with the expected duration, without fragments or cracks, and without complications; achievement of the planned lengthening objective without residual deformity; full

preservation of limb function and joint mobility; and complete patient satisfaction with the treatment results. A good result was assigned when a predictable osteotomy without fragmentation achieved the planned lengthening, but was associated with a prolonged procedure, minor joint stiffness (5-10°), residual or acquired segment deformity (3-5°), and partial patient dissatisfaction. A satisfactory outcome described a predictable osteotomy along the planned line, with prolonged duration and formation of minor fragments and/or cracks, but without complications; the achieved lengthening measured up to 75% of the planned amount, accompanied by joint movement limitation up to 10-15° and/or segment deformities up to 5-10° with the patient expressing partial satisfaction with the treatment outcome. A poor result was defined by an aberrant osteotomy line with the formation of fragments and/or cracks, failure to achieve 75% of the planned lengthening objective, significant joint contracture exceeding 15°, deformity greater than 10°, and patient dissatisfaction.

Funding: This work was carried out within the framework of the research plan of the Bukhara State Medical Institute (05.2022 DSc.135) entitled «Development of new approaches to early diagnosis, treatment, and prevention of pathological conditions affecting the health of the population of the Bukhara region after COVID-19 (2022-2026)».

Results

In Group 1 (n=20) treated with conventional single-approach femoral corticotomy, outcomes were distributed as follows: 85% excellent, 5% good, and 10% satisfactory.

In Group 2 (n=20) treated with the dual-approach counter corticotomy with preservation of medullary canal structures, outcomes were distributed as follows: 90% excellent, 5% good, and 5% satisfactory. The treatment outcome data for both study groups are presented in Table 2.

Table 2.

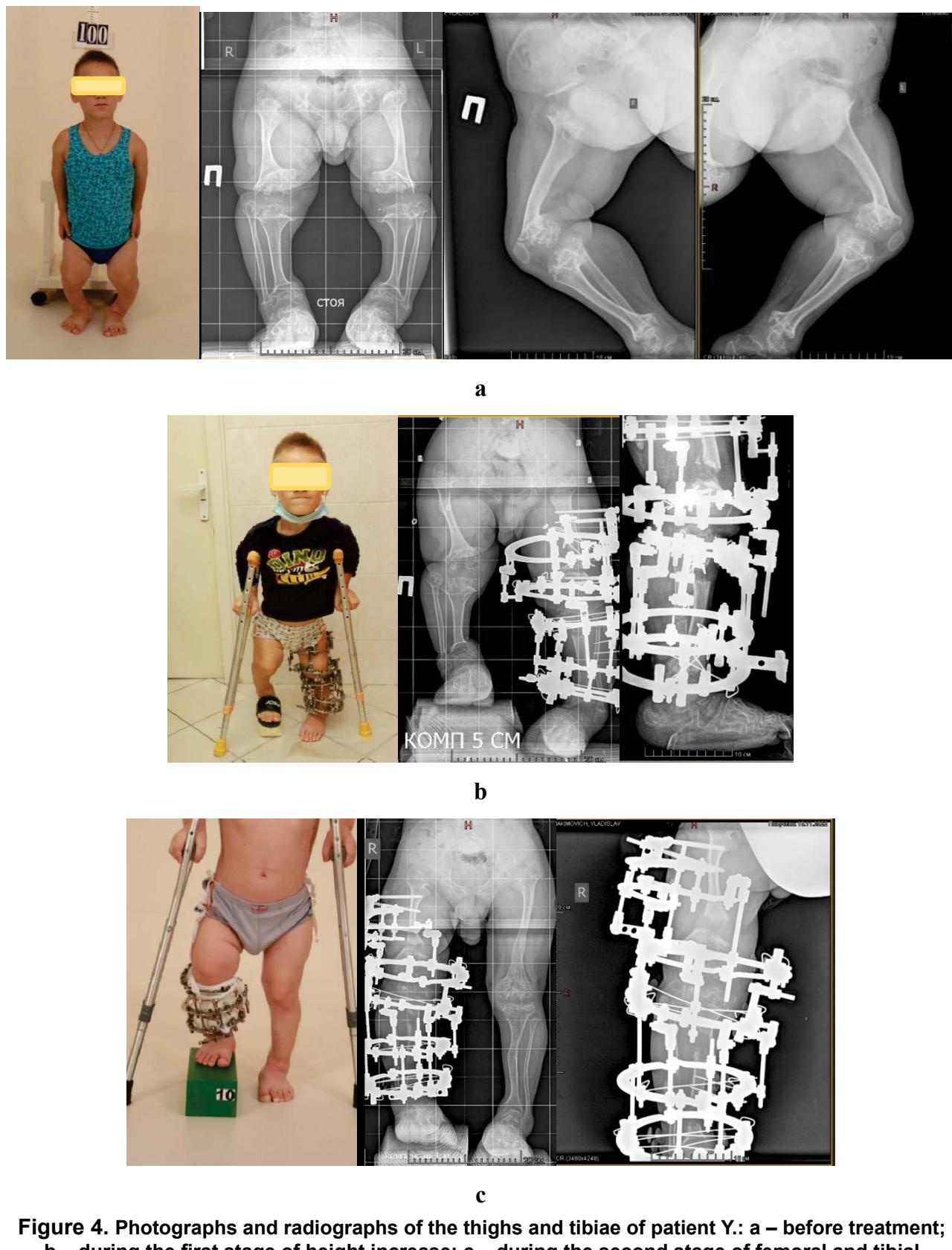
Treatment Outcomes

Study Group	Number of Patients							
	Excellent		Good		Satisfactory		Poor	
	abs.	%	abs.	%	abs.	%	abs.	%
Group 1 (n=20)	17	85	1	5	2	10	0	0
Group 2 (n=20)	18	90	1	5	1	5	0	0

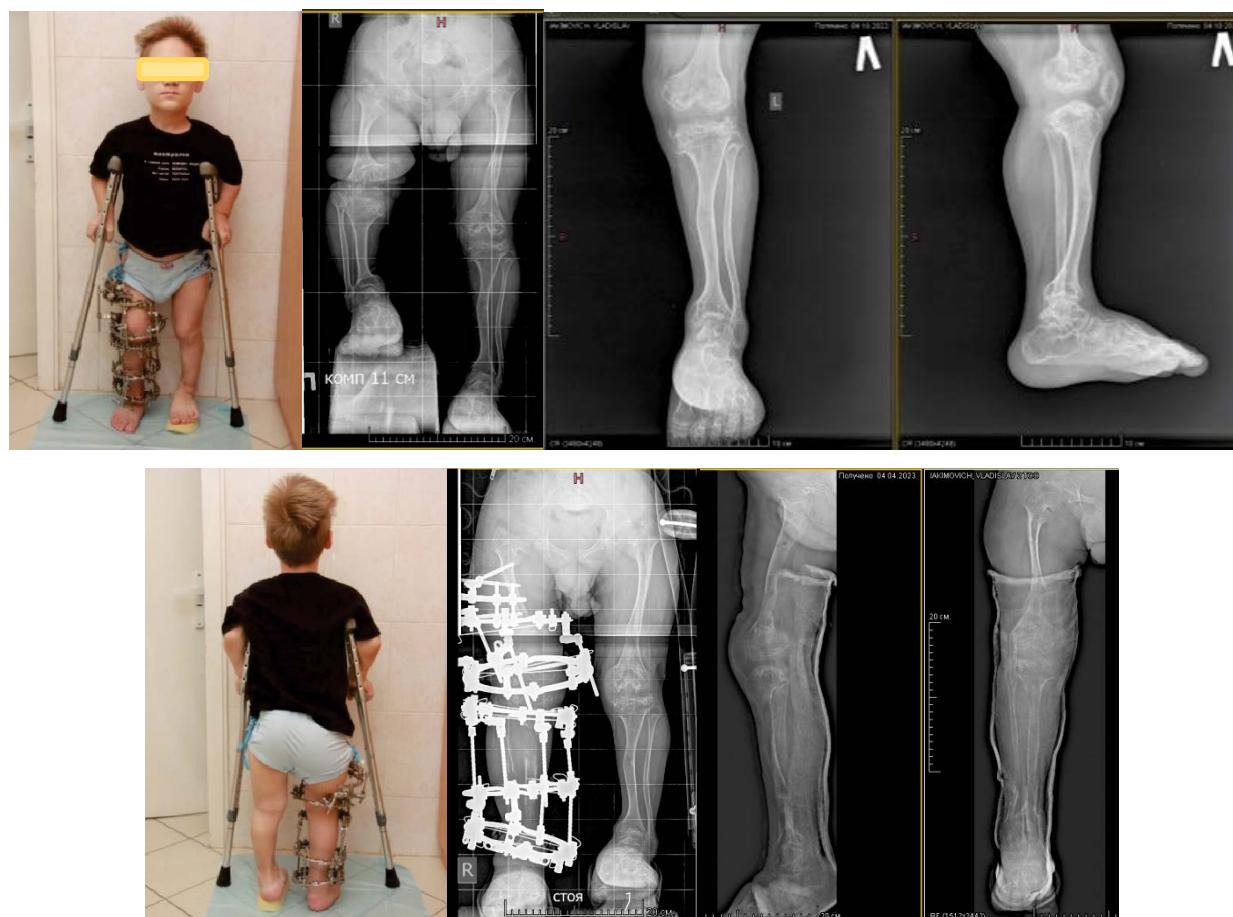
The combined excellent and good outcomes comprised 90% (18/20) of Group 1 and 95% (19/20) of Group 2. Notably, two patients (10%) in Group 1 with objectively satisfactory outcomes subjectively rated their results as excellent. No poor outcomes were recorded in either group.

Clinical Case Report.

A 13-year-old male (Patient Y., Group 2) presented with pseudoachondroplasia, short stature (100 cm height), and multiplanar lower limb deformities. Clinical assessment revealed combined hip and knee joint contractures, bilateral tibial varus, and disproportionate shortening of all extremities (Figure 4a). To restore height, correct deformities, and improve anatomical proportions, the


patient underwent a two-stage limb lengthening protocol using variants of hemilateral single-stage femoral and tibial distraction osteogenesis, with two sequential procedures separated by a one-year interval.

During the initial stage, simultaneous lengthening of the left femur (4.7 cm) and left tibia (5.2 cm) was achieved (Figure 4b). The distraction phase, using bilocal osteosynthesis, lasted 44 and 50 days for the femur and tibia, respectively, followed by a 134-day consolidation period with external fixation.


In the subsequent stage, the right lower limb was addressed using the same methodology, achieving symmetrical limb length (Figure 4c). Distraction required 46 days for the femur

and 56 days for the tibia, with consolidation period of 117-120 days. The comprehensive treatment resulted in a total height

increase of 20 cm while preserving full hip and knee joint function throughout the rehabilitation process (Figure 5).

Figure 4. Photographs and radiographs of the thighs and tibiae of patient Y.: a – before treatment; b – during the first stage of height increase; c – during the second stage of femoral and tibial lengthening

Figure 5. Photographs and radiographs of the thighs and tibiae of patient Y. after lengthening of the lower limb segments

Discussion

No previous literature has described the application of dual-approach corticotomy in patients with hypochondroplasia and achondroplasia. Furthermore, this study represents the first comparative analysis between the novel double-approach counter corticotomy technique and conventional femoral corticotomy in this patient population.

A complete osteotomy at the distal femoral third requires surgical exposure and circumferential cortical transection along anterolateral, posterolateral, anteromedial, and posteromedial surfaces using osteotomes or chisels. This approach inevitably causes significant damage to medullary canal structures and bone marrow.

The Ilizarov corticotomy [21, 22] involves mounting the supports of an external fixation device onto the femur and creating an access on the anterolateral surface of the thigh in the distal third of the femur. Using an instrument (a surgical chisel or an osteotome), the cortical plate is transected along the anterolateral and partially along the posterolateral surface of the femur. The anteromedial and posteromedial portions of the cortical plate on the femoral surface remain intact. Subsequently, a fracture of the remaining untransected bone portion (osteoclasis) is performed by rotating the supports of the external fixation device in opposite directions.

The Ilizarov corticotomy preserves bone marrow integrity but does not always result in a predictable fracture line of the femur; there is a risk that the untransected part of the bone will fracture along a line different from the planned one.

Thus, the limitation of existing bone dissection techniques lies in the risk of an unpredictable fracture line during bone integrity disruption. Conversely, achieving the planned fracture line through complete cortical transection fails to preserve the bone marrow and other medullary canal structures.

The success of orthopaedic treatment using Ilizarov transosseous osteosynthesis depends on multiple factors, one of the most critical being maximal preservation of osteogenic structures in the corticotomy zone. Corticotomy in the distal third of the femur presents specific technical challenges due to anatomical constraints, frequently preventing complete circumferential control of cortical transection. During conventional anterolateral corticotomy at the distal femoral third, for example, the osteotome can access only adjacent cortical plates, enabling transection of approximately three-quarters of the femoral circumference. Completion requires mechanical manipulation using either a bone spreader to wedge open the osteotomy or the application of force through external fixator supports to redress fragments, thereby disrupting the integrity of the remaining quarter of the femoral circumference. The dual-approach counter-corticotomy enables complete circumferential cortical dissection while preserving medullary canal structures and maintaining their osteogenic potential. The bilateral access provides comprehensive procedural control, allowing the surgeon to precisely detect corticotomy completion through tactile feedback, so to speak, at the tip of the osteotome.

Since both fixation wires and osteotome do not penetrate the medullary canal, the predetermined fracture pattern is achieved without rotational osteoclasis or medullary trauma. This technique enables precise cortical transection at the planned location with controlled geometry.

Evaluation of the dual-approach femoral corticotomy in 20 patients with hypochondroplasia and achondroplasia demonstrates its potential to expand the surgical arsenal for bone integrity disruption. Furthermore, when performing the proposed minimally invasive counter corticotomy in the distal femoral third, it was possible in 90% of cases to reduce operative time, prevent conversion of corticotomy to complete osteotomy, decrease surgical trauma, preserve

medullary canal structures, minimize risk to vascular and neural elements within the canal during corticotomy, and consequently maintain maximal osteogenic potential for bone regeneration.

Conclusion

Careful preservation of medullary canal structures during osteotomy was achieved in both Group 1 and Group 2, with a high rate of satisfactory outcomes. The new dual-approach femoral corticotomy technique demonstrates viability as an alternative to conventional femoral corticotomy in patients with hypochondroplasia and achondroplasia.

References:

1. Abakarov AA, Abakarov AA. Justification of a new method of alternative treatment of high congenital hip dislocations in adolescents and adults. Kazan medical journal. 2018;99(6):1009-15. DOI: <https://doi.org/10.17816/KMJ2018-1009>
2. Abakarov AA, Abakarov AA. Long-term treatment results of congenital hip disease in adolescents. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(4):87-96. DOI: <https://doi.org/10.17816/PTORS7487-96>
3. Shevtsov VI, Novikov KI. Polytrauma surgery – starting position for limb lengthening and growth regulation. Polytrauma. 2024;1:83-93. DOI: <https://doi.org/10.24412/1819-1495-2024-1-83-93>
4. Adejuyigbe B, Gharpure M, Wahle CF, Kallini JR. Distraction Osteogenesis: A Comprehensive Review. Applied Biosciences. 2024; 3(4):503-516. <https://doi.org/10.3390/appbiosci3040032>
5. Novikov KI, Subramanyam KN, Muradishev SO, Novikova OS, Kolesnikova ES. Cosmetic lower limb lengthening by Ilizarov apparatus: what are the risks? Clin Orthop Relat Res. 2014;472(11):3549-56. DOI: <https://doi.org/10.1007/s11999-014-3782-8>. PMID: 25183215; PMCID: PMC4182395.
6. Novikov KI, Menshikova TI, Subramanyam KN, Novikova OS, Mundargi AV. Sonographic evaluation of distraction osteogenesis in patients undergoing lengthening of tibia for increase in stature. J Limb Leng Reconstr. 2018;4(1):33-40. DOI: https://doi.org/10.4103/jllr.jllr_14_17
7. Hoover-Fong J, McGready J, Schulze K, Alade AY, Scott CI. A height-for-age growth reference for children with achondroplasia: Expanded applications and comparison with original reference data. Am J Med Genet A. 2017;173(5):1226-30. DOI: <https://doi.org/10.1002/ajmg.a.38150>
8. Basic Techniques for Extremity Reconstruction: External Fixator Applications According to Ilizarov Principles. 1st ed. Springer; 2018. 749p. Hosny GA, Bilgili F, Balci HI, Bilgili F, Hosny GA, Balci HI, et al. Congenital Lower Limb Deformities. p.493-539. DOI: https://doi.org/10.1007/978-3-319-45675-1_35
9. Morasiewicz P, Urbanski W, Kulej M, Dragan SL, Dragan SF, Pawik L. Balance and lower limb loads distribution after Ilizarov corticotomy. Injury. 2018;49(4):860-5. DOI: <https://doi.org/10.1016/j.injury.2018.03.016>. PMID: 29571564
10. Rob CF, Hossain MD, Kang XS. Management of post-traumatic genu valgus deformity in adolescent by proximal tibial corticotomy with bone lengthening by Ilizarov method: a case report. MOJ Orthop Rheumatol. 2023;15(6):219-23. DOI: <https://doi.org/10.15406/mojor.2023.15.00649>
11. Morasiewicz P, Dragan S, Dragan SL, Wrzosek Z, Pawik L. Pedobarographic analysis of body weight distribution on the lower limbs and balance after Ilizarov corticotomies. Clinical Biomechanics. 2016;31:2-6. DOI: <https://doi.org/10.1016/j.clinbiomech.2015.10.009>. PMID: 26518282.
12. Depaoli A, Magnani M, Casamenti A, Cerasoli T, Ramella M, Menozzi GC, et al. Is the high healing index a complication of progressive long bone lengthening? Observations from a cohort of 178 children treated with circular external fixation for lower limb length discrepancy. Children. 2023;10(10):1586. DOI: <https://doi.org/10.3390/children10101586>. PMID: 37892249; PMCID: PMC10605005.
13. Yadav RK, Parajulee G, Dahal A. Tibial lengthening with LRS fixator in a pediatric patient with congenital anterolateral bowing: A case report. Int J Surg Case Rep. 2025;134:111722. DOI: <https://doi.org/10.1016/j.ijscr.2025.111722>. PMID: 40714669; PMCID: PMC12318311.
14. Sagade B, Jagani N, Chaudhary I, Chaudhary M. Congenital posteromedial bowing of tibia: comparison of early and late lengthening. Journal of Pediatric Orthopaedics. 2021;41(9): e816-22. DOI: <https://doi.org/10.1097/bpo.0000000000001935>. PMID: 34387229.
15. Mohammed ZA. The outcome of the use of Ilizarov technique in the management of congenital fibular hemimelia: Review of cases admitted to Erbil Teaching Hospital in Kurdistan region of Iraq. Zanco J Med Sci. 2019;23(3):329-37. DOI: <https://doi.org/10.15218/zjms.2019.041>
16. Tong K, Zhong Z, Peng Y, Lin C, Cao S, Yang Y, et al. Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury. 2017;48(7):1616-22. DOI: <https://doi.org/10.1016/j.injury.2017.03.042>. PMID: 28408083.
17. Novikov KI, Subramanyam KN, Kolesnikova ES, Novikova OS, Jaipuria J. Guidelines for safe bilateral tibial lengthening for stature. J Limb Leng Reconstr. 2017;3(2):93-100. DOI: https://doi.org/10.4103/jllr.jllr_7_17
18. Tosun HB, Agir I, Gumustas S, Serbest S, Uludag A, Celik S. Tibial lengthening using a fixator-assisted lengthening plate: a new technique. Trauma Monthly. 2016;21(5): e25340. DOI: <https://doi.org/10.5812/traumamon.25340>. PMID: 28184364; PMCID: PMC5292023.
19. Diachkova GV, Novikov KI, Diachkov KA, Rohilla R, Wadhwani J. Radiomorphological manifestations of femoral and tibial cortical bones at different stages of limb lengthening. Indian Journal of Orthopaedics. 2019;53(4):567-73. DOI: https://doi.org/10.4103/ortho.ijorth_443_18. PMID: 31303674; PMCID: PMC6590022.
20. Baruah RK, Baruah JP, Shyam-Sunder S. Acute shortening and Re-lengthening (ASRL) in infected non-union of tibia-advantages revisited. Malaysian Orthopaedic Journal. 2020;14(2):47-56. DOI: <https://doi.org/10.5704/moj.2007.012>. PMID: 32983377; PMCID: PMC7513652.
21. Morasiewicz P, Filipiak J, Krysztoforski K, Dragan S. Clinical factors affecting lower limb torsional deformities treatment with the Ilizarov method. Orthop Traumatol Surg Res. 2014;100(6):631-6. DOI: <https://doi.org/10.1016/j.otsr.2014.03.019>. PMID: 25002198.
22. Popkov DA, Popkov AV, Kononovich NA, Barbier D, Ceroni D, Journeau P, et al. Experimental study of progressive tibial lengthening in dogs using the Ilizarov technique. Comparison with and without associated intramedullary K-wires. Orthop Traumatol Surg Res. 2014;100(7):809-14. DOI: <https://doi.org/10.1016/j.otsr.2014.06.021>. PMID: 25306304.

**МІНІМАЛЬНО ІНВАЗИВНА КОНТРАКТОРКОТОМІЯ ДИСТАЛЬНОГО ВІДДІЛУ БЕДРЕННОЇ
КІСТКИ У ПАЦІЄНТІВ ІЗ ВРОДЖЕНИМИ ПОРУШЕННЯМИ ФУНКІЙ НІЖНИХ КІНЦІВОК
(ЗІ ЗБЕРЕЖЕННЯМ СТРУКТУР МЕДУЛЛЯРНОГО КАНАЛУ)**

К. Х. Мірзамуродов, А. У. Гаффоров, А. А. Тешаев, А. З. Ісомутдинов

**Бухарський державний медичний інститут імені Абу Алі ібн Сіно
(м. Бухара, Узбекистан)**

Резюме.

Зростаючий попит на ортопедичну корекцію вимагає вдосконалення хірургічних технік, що максимізують регенерацію кісток і мінімізують ятrogenну травму медулярного каналу.

Мета дослідження: оцінити результати нової подвійної кортикотомії стегнової кістки у пацієнтів з гіпохондроплазією та ахондроплазією.

Матеріали та методи. У проспективному динамічному активному досліджені взяли участь 40 пацієнтів. Когорту було розділено на групу порівняння (група 1, $n = 20$) та дослідну групу (група 2, $n = 20$), до складу яких входили пацієнти дитячого віку від 7 до 18 років з полісегментарними деформаціями та укороченням ніжних кінцівок генетичної етіології. Група 1 пройшла традиційну кортикотомію з одним підходом, а група 2 – кортикотомію стегнової кістки з двома послідовними підходами – мінімально інвазивну контракторкотомію через передньомедіальний, а потім передньолатеральний доступ – із обов'язковою кінцевою стабілізацією за допомогою системи зовнішньої фіксації з натяжними стрижнями або шарнірними вузлами. Результати лікування оцінювали за чотирма параметрами: досягнуте подовження сегмента, відсутність залишкової деформації, збереження функції кінцівки та суглоба, а також показники задоволеності пацієнтів. Протокол дослідження отримав етичне схвалення від Етичної комісії Республіканського спеціалізованого науково-практичного медичного центру травматології та ортопедії (схвалення № 8-2023 від 15 серпня 2023 року). Всі процедури проводилися відповідно до Гельсінської декларації Всесвітньої медичної асоціації (поправки 2000 року). Статистичний аналіз проводився за допомогою Microsoft Excel 2013. З огляду на розміри вибірки в групах, було застосовано непараметричну статистику з рівнем значущості, встановленим на рівні $p \leq 0,05$. Кількісні характеристики вибірки представлені в таблиці у вигляді медіан (25-75-й процентиль) та кількості спостережень (n), що відповідає кількості крокових циклів. Статистична значущість відмінностей була визначена за допомогою непарного тесту Вілкоксона.

Фінансування. Дане дослідження виконано в рамках плану науково-дослідних робіт Бухарського державного медичного інституту (05.2022 DSc.135) «Розробка нових підходів до ранньої діагностики, лікування та профілактики патологічних станів організму, що впливають на здоров'я населення Бухарського регіону після COVID-19 (2022-2026)».

Результати дослідження. У групі 1 ($n=20$), де класичну кортикотомію в дистальній третині стегнової кістки проводили через передньолатеральний доступ, результати були відмінними у 85% пацієнтів, добрими у 5% і задовільними у 10%. У групі 2 ($n=20$), де застосувалася подвійна контра-кортикотомія із збереженням медулярного каналу, результати були відмінними у 90%, добрими у 5% і задовільними у 5%.

Висновок. Обидві техніки забезпечили ретельне збереження структур медулярного каналу і дали високий відсоток задовільних результатів. Нова двостороння кортикотомія стегнової кістки виявилася життєздатною і ефективною альтернативою класичній техніці для пацієнтів з гіпохондроплазією та ахондроплазією.

Ключові слова: дистракційний остеосинтез; метод Ілізарова; остеотомія; кортикотомія; контра-кортикотомія; полісегментарний остеосинтез.

Contact information:

Khabibjon Halim ugli Mirzamurodov – PhD, assistant at the Department of Traumatology and Neurosurgery, Bukhara State Medical Institute named after Abu Ali ibn Sino (Bukhara, Uzbekistan)

e-mail: mirzamurodov93@gmail.com

ORCID ID: <https://orcid.org/0009-0005-9295-362X>

Azamat Uygunovich Gafforov – PhD, assistant at the Department of Traumatology and Neurosurgery, Bukhara State Medical Institute named after Abu Ali ibn Sino (Bukhara, Uzbekistan)

e-mail: azamat.gafforov.89@mail.ru

ORCID ID: <https://orcid.org/0000-0002-1509-8114>

Azamat Azamovich Teshayev – PhD, assistant at the Department of Traumatology and Neurosurgery, Bukhara State Medical Institute named after Abu Ali ibn Sino (Bukhara, Uzbekistan)

e-mail: t.azamat.88@mail.ru

ORCID ID: <https://orcid.org/0000-0003-2536-3425>

Azam Zokirovich Isomutdinov – Assistant at the Department of Faculty and Hospital Surgery at the Abu Ali ibn Sino Bukhara State Medical Institute (Bukhara, Uzbekistan)

e-mail: azamzokirovic@gmail.com

ORCID ID: <https://orcid.org/0009-0006-8817-2836>

Контактна інформація:

Мірзамуродов Хабібжон Халім Углі – кандидат медичних наук, асистент кафедри травматології та нейрохірургії Бухарського державного медичного інституту імені Абу Алі ібн Сіно (м. Бухара, Узбекистан)

e-mail: mirzamurodov93@gmail.com

ORCID ID: <https://orcid.org/0009-0005-9295-362X>

Гаффоров Азamat Уйгунович – кандидат медичних наук, асистент кафедри травматології та нейрохірургії Бухарського державного медичного інституту імені Абу Алі ібн Сіно (м. Бухара, Узбекистан)

e-mail: azamat.gafforov.89@mail.ru

ORCID ID: <https://orcid.org/0000-0002-1509-8114>

Тешаев Азamat Азамович – кандидат медичних наук, асистент кафедри травматології та нейрохірургії Бухарського державного медичного інституту імені Абу Алі ібн Сіно (м. Бухара, Узбекистан)

e-mail: t.azamat.88@mail.ru

ORCID ID: <https://orcid.org/0000-0003-2536-3425>

Аъзам Зокирович Ісомутдинов – асистент кафедри факультетської та госпітальної хірургії Бухарського державного медичного інституту імені Абу Алі ібн Сіно (м. Бухара, Узбекистан)

e-mail: azamzokirovic@gmail.com

ORCID ID: <https://orcid.org/0009-0006-8817-2836>

Received for editorial office on 03/09/2025

Signed for printing on 27/11/2025