Порушення обміну амінокислот в перинатальному періоді

Автор(и)

  • A. A. Yanovska Харківський спеціалізований медико-генетичний центр (м.Харків, Україна), Ukraine

DOI:

https://doi.org/10.24061/2413-4260.VI.3.21.2016.14

Ключові слова:

перинатальна енцефалопатія, амінокислоти

Анотація

Перинатальна енцефалопатія (ПЕП) об′єднує порушення функції або структури головного мозку різного походження, що виникають в перинатальний період в результаті несприятливих факторів в антенатальному періоді, починаючи з 28 тижнів, під час пологів і в перші 7 днів після народження дитини.   Механізми розвитку і регуляції перинатальних ускладнень  ще до кінця не з′ясовані. Представлені матеріали показують  взаємний вплив перинатальних уражень та амінокислотних порушень; значення деяких амінокислот як біологічних маркерів для уточнюючої діагностики та патогенетичної терапії патологічних станів.   

Посилання

Baranov AA pod red. Detskie bolezni [Childhood diseases]: uchebnik. 2–e izd., ispr. i dop.[Internet]. Moscow: Gjeotar–Media; 2009.1008p.

Available from: http://vmede.org/sait/?page=10&id=Pediatriya_ped_diz_barabanova_2009 (in Russian).

Sokolova OG. Perinatal'nye gipoksicheskie porazhenija nervnoj sistemy u detej pervogo goda zhizni: kliniko-diagnosticheskie aspekty [Perinatal hypoxic damage to the nervous system in infants: clinical and diagnostic aspects]. Dissertation. Nizhnij Novgorod. 2006; 127 p. (in Russian).

Vil'nic A. Diagnoz: "perinatal'naja jencefalopatija" [Diagnosis: “perinatal encephalopathy”] [Internet]; 2005. Available from: http://www.7ya.ru/article/Diagnoz-perinatalnaya-jencefalopatiya/ (in Russian).

Sapa IJu. Perinatal'naja jencefalopatija u detej [Perinatal encephalopathy in children]. [Internet]; 2009. Available from: http://www.likar.info/detskie-bolezni/article-42854-perinatalnaya-entsefalopatiya-u-detey (in Russian).

Xu G, Broadbelt KG, Haynes RL, Folkerth RD, Borenstein NS, Belliveau RA, Trachtenberg FL, Volpe JJ, Kinney HC. Late development of the GABAergic system in the human cerebral cortex and white matter. J NeuropatholExp Neurol. 2011Oct;70(10):841-58. doi: 10.1097/NEN.0b013e31822f471c.

Baranov AA, Borovyk TE, Ladodo KS, Hrechanina OIa, Zdybs'ka OP, Hrechanina IuB. Spadkovi porushennia obminu aminokyslot [Hereditary infringement of an exchange of amino acids]. Metod.rekomendatsii. Kharkiv; 2013.111p.

Georg F. Hoffmann, Johannes Zschocke. Vademecum Metabolicum. Фридрихс-дорф, ФРГ 2011.

Nasledstvennye narushenijaobmenaaminokislot. Fenilpirovinogradnaja oligofrenija [Hereditary disorders of amino acid metabolism. Of phenyl oligophrenia][Internet]. Available from: http://meduniver.com/Medical/Neurology/1006.html/ (in Russian).

Syrovaja AO, Shapoval LG, Makarov VA, Petjunina VN, Graboveckaja ER, Andreeva SV, Nakonechnaja SA, Bachinskij RO i dr. Aminokisloty glazami himikov, farmacevtov, biologov [Amino acids according to the opinion of chemists, pharmacists, biologists]. Har'kov: «Shhedra sadiba pljus»; 2014. 228p. (in Russian).

Severin SE. Biologicheskaja himija s uprazhnenijami i zadachami [Biological chemistry with exercises and tasks] [Internet]; 2011. 624p. Modul' 9: obmen aminokislot. Available from: http://vmede.org

Pechen': obmen aminokislot i narushenija obmela [Liver: the exchange of amino acids and metabolic disorders] [Internet]. Available from: http://humbio.ru/humbio/har3/00262f79.htm/ (in Russian).

Patologija amіnokislotnogo obmena. Nasledstvennye narushenija transporta aminokislot [Pathology of amino acid metabolism. Hereditary infringements of movement of amino acids]. vunivere.ru/work5273/page7 (in Russian).

Shalaєva ІV. Narushenija obmena aminokislot [Disorders of amino acid metabolism]. Gazeta «Novosti mediciny i farmacii». Gastrojenterologija (304). 2009. (opublik.28.06.2010). (in Russian).

Gol'dberga ED. Patofiziologija tipovih narushenij obmela veshhestv [Pathophysiology of typical metabolic disorders]. Pathophysiology Nowicki. Tom 1. – 2009 g., gl. 12. [Internet]. Available from: http://vmede.org/sait/?id=Patofiziologija_novickij_goldberg&menu=Patofiziologija_novickij_goldberg&page=18 (in Russian).

Bljau N, Gofman G, Leonard Dzh, Klark Dzh. Vrachebnoe rukovodstvo po lecheniju i katamnezu metabolicheskih zabolevanij [Physician guidelines for the treatment of metabolic diseases and Catamnesis] (in Russian).

Zajcev SV,Carenko OS. Nejroreanimatologija. Vyhod iz komy (terapija postkomatoznyh sostojanij) [Neuro Reanimatology. Output out of the coma]. Moscow: Litass; 2012. 120p. (in Russian).

Hoffmann GF, Nyhan WL, Zschocke J, Kahler SG, Mayatepek E. Inherited Metabolic Diseases. Philadelphia: Lippincott Williams & Wilkins. 2001.

PJeP (perinatal'naja jencefalopatija) u novorozhdennogo i grudnogo rebenka [PEP (perinatal encephalopathy) in the newborn and infant] [Internet]. Available from: http://www.medicalj.ru/diseases/perinatal/640-pep-perinatalnaja-encefalopatija (in Russian).

Hassell KJ, Ezzati M, Alonso-Alconada D, Hausenloy DJ, Robertson NJ.

New horizons for newborn brain protection: enhancing endogenous neuroprotection.

Arch Dis Child Fetal Neonatal Ed. 2015 Jun 10. pii: fetalneonatal-2014-306284. doi: 10.1136/archdischild-2014-306284. [Epub ahead of print].

Walsh BH, Broadhurst DI, Mandal R, Wishart DS, Boylan GB, Kenny LC, Murray DM. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS One. 2012;7(12):e50520. doi: 10.1371/journal.pone.0050520. Epub 2012 Dec 5.

Zozulia IS, Bobrova VI, M’iasnykova MP, Sych NS. Stan neiroaminokyslot u khvorykh u hostromu periodi infarktu mozku z kohnityvnymy porushenniamy [Condition amino acid neuro patients with acute cerebral infarction with cognitive impairment]. Mezhdunarodnyj nevrologicheskij zhurnal. 2010; 7 (37). (in Russian).

Tanaka K. Brain development and glutamate. Brain Nerve. 2013 Oct;65(10):1121-32.

Pypa LV, Svistil'nik TV. Vyvchennia vplyvu eksaito toksychnykh aminokyslot na stupin' porushennia svidomosti pry hniinykh meninhitakh u ditei [The influence Eksayt toxic amino acids on the degree of impairment of consciousness in purulent meningitis in children]. «Zdorov'e rebenka». 2013;4(47). (in Russian).

Zhang X-M, Jie Zhu. Kainic acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Current Neuropharmacology. 2011;9:388-398.

Griesmaier E, Posod A, Gross M, Neubauer V, Wegleiter K, Hermann M, Urbanek M, Keller M, Kiechl-Kohlendorfer U. Neuroprotective effects of the sigma-1 receptor ligand PRE-084 against excitotoxic perinatal brain injury in newborn mice. Exp Neurol. 2012 Oct;237(2):388-95. doi: 10.1016/j.expneurol.2012.06.030. Epub 2012 Jul6.

Simonishvili S, Jain MR, Li H, Levison SW, Wood TL. Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicityandperinatal hypoxia-ischemia.ASNNeuro. 2013 Dec 23;5(5):e00131. doi: 10.1042/AN20130027.

Pozdnyakova N, Dudarenko M, Yatsenko L, Himmelreich N, Krupko O, Borisova T1. Perinatal hypoxia: different effects of the inhibitors of GABA transporters GAT1 and GAT3 on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals. Croat Med J. 2014 Jun 1;55(3):250-8.

Fuchs SA, Berger R, de Koning TJ. D-serine: the right or wrong isoform? Brain Res. 2011 Jul 15;1401:104-17. doi: 10.1016/j.brainres.2011.05.039. Epub 2011 May 23.

Fuchs SA, Peeters-Scholte CM, de Barse MM, Roeleveld MW, Klomp LW, Berger R, de Koning TJ. Increased concentrations of both NMDA receptor co-agonists D-serine and glycine in global ischemia: a potential novel treatment target for perinatal asphyxia.

Amino Acids. 2012 Jul;43(1):355-63. doi: 10.1007/s00726-011-1086-9. Epub 2011 Sep 23.

ShaheenR, RahbeeniZ, AlhashemA, FaqeihE, ZhaoQ, XiongY, AlmoisheerA, Al-QattanSM, AlmadaniHA, Al-OnaziN, Al-BaqawiBS, SalehMA, AlkurayaFS. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am J Hum Genet. 2014 Jun 5;94(6):898-904. doi: 10.1016/j.ajhg.2014.04.015. Epub 2014 May 15.

Grechanina EJa, Grechanina JuB, Vasil'eva OV, Gusar VA. Nasledstvenno obuslovlennye trombofilii [Hereditary a thrombophilia]. Uchebnoe posobie. Har'kov; 2010. 62p. (in Russian).

Harteman JC, Groenendaal F, Benders MJ, Huisman A, Blom HJ, de Vries LS. Role of thrombophilic factors in full-term infants with neonatal encephalopathy. Pediatr Res. 2013 Jan;73(1):80-6. doi: 10.1038/pr.2012.150. Epub 2012 Nov 5.

Usluer H1, Turker G, GokalpAS.Value of homocysteine levels, troponin I, and score for neonatal acute physiology and perinatal extension II as early predictors of morbidity. Pediatr Int. 2012 Feb;54(1):104-10.

Masoura S, Kalogiannidis IA, Gitas G, Goutsioulis A, Koiou E, Athanasiadis A, Vavatsi N. Biomarkers in pre-eclampsia: a novel approach to early detection of the disease. J ObstetGynaecol. 2012 Oct;32(7):609-16. doi: 10.3109/01443615.2012.709290.

Maayan-Metzger A, Lubetsky A, Kuint J, Rosenberg N, Simchen MJ, Kuperman A, Strauss T, Sela BA, Kenet G. The impact of genetic and environmental factors on homocysteine levels in preterm neonates.Pediatr Blood Cancer. 2013Apr;60(4):659-62. doi: 10.1002/pbc.24352. Epub 2012 Sep 28.

Tjurenkov NI, Perfilova VN, Mihajlova LI, Zhakupova GA, Lebedeva SA. Sravnitel'noe izuchenie vlijanija novyh proizvodnyh nejroaktivnyh aminokislot na postnatal'noe razvitie potomstva krys s jeksperimental'nymgestozom [A comparative study of the impact of new derivatives of neuroactive amino acids in the postnatal development of the offspring of rats with eksperimentalnymgestozom]. Vestnik Rossijskoj akademii medicinskih nauk. Moscow. 2014;9(10):123-130. (in Russian).

Batista TM, Ribeiro RA, da Silva PM, Camargo RL, Lollo PC, Boschero AC, Carneiro EM.

Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. MolNutr Food Res. 2013 Mar;57(3):423-34. doi: 10.1002/mnfr.201200345. Epub 2012 Dec 26.

Cordero P, Milagro FI, Campion J, Martinez JA. Maternal methyl donors supplementation during lactation prevents the hyperhomocysteinemia induced by a high-fat-sucrose intake by dams.Int J Mol Sci. 2013 Dec 16;14(12):24422-37. doi: 10.3390/ijms141224422.

Houin SS, Rozance PJ, Brown LD, Hay WW Jr, Wilkening RB, Thorn SR. Coordinated changes in hepatic amino acid metabolism and endocrine signals support hepatic glucose production during fetal hypoglycemia. Am J Physiol Endocrinol Metab. 2015 Feb 15;308(4):E306-14. doi: 10.1152/ajpendo.00396.2014. Epub 2014 Dec 16.

Martin Agnoux A, Antignac JP, Boquien CY, David A, Desnots E, Ferchaud-Roucher V, Darmaun D, Parnet P, Alexandre-Gouabau MC. Perinatal protein restriction affects milk free amino acid and fatty acid profile in lactating rats: potential role on pup growth and metabolic status. J Nutr Biochem. 2015 Jul;26(7):784-95. doi: 10.1016/j.jnutbio.2015.02.012. Epub 2015 Apr13.

Roysommuti S, Wyss JM. Perinatal taurine exposure affects adult arterial pressure control. Amino Acids. 2014 Jan;46(1):57-72.

Roysommuti S, Thaeomor A, Khimsuksri S, Lerdweeraphon W, Wyss JM. Perinatal taurine imbalance alters the interplay of renin-angiotensin system and estrogen on glucose-insulin regulation in adult female rats. Adv Exp Med Biol. 2013;776:67-80.

Banerjee S, Das RK, Giffear KA, Shapiro BH. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate. Nutrients. 2015 Jan 8;7(1):360-89.

Maliszewski AM, Gadhia MM, O'Meara MC, Thorn SR, Rozance PJ, Brown LD. Prolongedinfusionof amino acids increases leucineoxidationinfetalsheep. Am J Physiol Endocrinol Metab. 2012 Jun 15;302(12):E1483-92.

Fleming TP, Watkins AJ, Sun C, Velazquez MA, Smyth NR, Eckert JJ. Do little embryos make big decisions? How maternal dietary protein restriction can permanently change an embryo.Toxicol Appl Pharmacol. 2015 Apr 1;284(1):79-91.

Zhang S, Regnault TR, Barker PL, Botting KJ, Mc Millen IC, Mc Millan CM, Roberts CT, Morrison JL. Placental adaptations in growth restriction. 2015;7(1):360-389.

Regnault TR, de Vrijer B, Galan HL, Wilkening RB, Battaglia FC, Meschia G. Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction. Pediatr Res. 2013 May;73(5):602-11.

Rosario FJ, Kanai Y, Powell TL, Jansson T. Mammalian target of rapamycinsignalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol. 2013 Feb 1;591(Pt 3):609-25.

Dubinina NV, Holupjak IJu. Antimikrobnyj potencіal nekotoryh aminokislot [Antimicrobial potentsіal certain amino acids]. Eksperymental'na i klinichna medytsyna. KhDMU. 2002; 3. (in Russian).

Keunen K, van Elburg RM, van Bel F, Benders MJ. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res. 2015 Jan;77(1-2):148-55. doi: 10.1038/pr.2014.171. Epub 2014 Oct 14.

Willemen SA, Che L, Dewilde S, Van Hauwaert ML, De Vos M, Huygelen V, Fransen E, Tambuyzer BR, Casteleyn C, Van Cruchten S, Van Ginneken C. Enteric and serological distribution of serotonin and its precursor tryptophan in perinatal low and normal weight piglets. Animal. 2014 May;8(5):792-9.

Willemen S, Che L, De Vos M, Huygelen V, Tambuyzer B, Casteleyn C, Van CS, Zhang K, Van Ginneken C. Perinatal growth restriction is not related to higher intestinal distribution and increased serum levels of 5-hydroxytryptamin in piglets. J Anim Sci. 2012 Dec;90Suppl 4:305-7.

##submission.downloads##

Опубліковано

2016-06-15

Як цитувати

Yanovska, A. A. (2016). Порушення обміну амінокислот в перинатальному періоді. Неонатологія, хірургія та перинатальна медицина, 6(3(21), 87–92. https://doi.org/10.24061/2413-4260.VI.3.21.2016.14