Introduction
The functional activity of the pineal gland plays a dramatic important role in the adaptation to postnatal life and in the pathogenesis of the most common perinatal pathology of premature infants.

The aim of the study. To determine the morphofunctional features of the pineal gland in premature infants with extremely low birth weight.

Material and methods. In 46 preterm infants with extremely low birth weight, the level of melatonin metabolite in urine 6-sulfoxymelatonin was determined at first day of life. The 20 dead infants underwent macro- and microscopic examination of the pineal gland using the immunohistochemical method.

Results. All preterm infants with extremely low birth weight had perinatal pathology, which led to death in 20 of them. Urinary excretion of the metabolite melatonin 6-sulfoxymelatonin in preterm infants with extremely low birth weight in the first day of life, which had fatal consequences, significantly reduced compared with surviving children, indicating depletion of functional activity of the pineal gland and may be as a marker of adverse course of the neonatal period. Morphologically, in the pineal gland of premature infants with extremely low body weight there is an increase in morphofunctional activity of pineal cells. This is confirmed by morphometric data and increased expression of MelanA and S100 in immunohistochemical studies. Macro- and microscopic data suggest that extraterine existence in distress conditions accelerates the differentiation of the pineal gland (depletion) and indicates the presence of damage to glandular tissue, which in turn reduces the synthesis of melatonin and its mediated metabolite 6 – sulfoxymelatonin in urine.

Conclusions. Decreased urinary excretion of 6-sulfoxymelatonin in preterm infants with extremely low birth weight in the first day of life and morphological changes in the pineal gland of deceased children indicate depletion of functional activity of the pineal gland in conditions of perinatal pathology.

Key words: Melatonin; Prematurity; Pineal Gland.
embedded in paraffin, prepared 4 μm-thick sections that were applied to highly adhesive Super Frost glass and dried at 37°C for 18 hours. Demasking heat treatment was performed by boiling the sections in citrate buffer (pH 6.0). An UltraVision Quanto Detection Systems HRP Polymer (Thermo scientific) was used to visualize primary antibodies. DAB (diaminobenzidine) was used as a chromogen. The marker antibodies MelanA (Vitro, Spain) and S100 (Leica Biosystems Newcastle, UK) were used.

Exel for Windows and Statistica 7.0 for Windows software packages were used for statistical analysis. Check of data distribution for compliance to Gauss law was performed using Shapiro-Wilk's criterion. Median (Me); minimum and maximum values (min is minimum and max is maximum), 95% confidence interval (CI) were determined. Nonparametric Mann-Whitney U-criterion (MW test) was used to compare two independent samples. The relative risk index (RR) and its 95% confidence interval were used. Fisher’s F-criterion was used to compare particles. The data obtained during statistical analysis were considered reliable at p<0.05.

Results and Discussion

The maternal course of pregnancy and delivery in infants with ELBW included the following conditions: premature rupture of membranes, 18 (39.1 %); risk of miscarriage, 13 (28.2 %); urogenital infections, 7 (15.2 %); multiple pregnancy, 12 (26.0 %); preeclampsia, 6 (13.0 %); cesarean section, 28 (68.0 %); and fetal distress, 13 (28.2 %). Clinical and demographic data of preterm infants with ELBW are presented in Table 1.

When comparing the incidence of pathological conditions in the antepartum and intrapartum periods in preterm infants with ELBW who survived (n=26) and those who died (n=20), no significant differences were determined. There were no significant differences in gestational age among surviving and deceased children: 28 (min 25; max 29) weeks and 28 (min 24; max 28) weeks, respectively (MW test, p=0.4257). When comparing the frequency of pathological conditions in children who died, only a significant increase in the frequency of grade III-IV IVH was determined (9 of 12), whereas among the 10 surviving children only two children had grade III-IV IVH, the remaining 8 children had grade II IVH (RR = 3.8 95% CI 1.1 to 13.5), p=0.0433. There were no significant differences in the incidence of other pathological conditions in children with ELBW who died and those who survived.

The results of urine 6-SM analysis in the first day of life in preterm infants with ELBW demonstrated its significant reduction in those with lethal outcomes. In surviving infants, urinary 6-SM values were: 180.6 (min 22.0; max 501.0) pg/ml, and in infants who died: 65.5 (min 7.00; max 501.00) pg/ml (MW test, p=0.0006).

On macroscopic examination in infants, the epiphysis was predominantly semilunar and cone-shaped. Microscopic examination of the glands revealed pronounced signs of acute circulatory disorder in the form of sharp dilatation and fullness of capillaries with their ruptures and formation of microhematomas both in the parenchyma and in subcapsular parts (Fig. 1).
Light microscopy showed predominantly dark pinealocytes with scanty cytoplasm in the form of a thin rim, multiple immature pinealocytes with a small dark nucleus. Dark pinealocyte nuclei possessed dark karyoplasm with a structureless mass of condensed chromatin. A small number of light cells with vacuolated cytoplasm and rounded or angular nucleus were detected. We noted a decrease in the area of actively functioning light cells (93.4 μm²), with a tendency for the nucleus to decrease (38.7 μm²), and the nuclear cytoplasmic index was 0.4. Light cells were observed not only in the center of the gland parenchyma, but also focally along the periphery, in some places under the capsule, a light zone was detected (Fig. 2).

Some cells showed shadows instead of nuclei, abundant cytoplasm, in some cells cytolemma integrity disorder and even its disappearance were detected. Focal accumulations of fluid due to cell lysis were detected in the center of gland particles (Fig. 3).

Immunohistochemical examination demonstrated moderate expression of MelanA (Fig. 4) and moderate expression of S100 (Fig. 5) in light active pinealocytes. The moderate expression of these markers confirms the fact that in children with ELBW at birth, even those with an unfavorable course of the neonatal period, pinealocytes have functional activity, namely light cells. Light cells, unlike dark pinealocytes, are considered mature. So, the adaptive function of the light cells of the epiphysis is functional for extrauterine life in preterm infants with ELBW. Therefore, many other factors influence thanatogenesis and reduced pineal function.
It is known that perinatal pathology in preterm infants with ELBW is accompanied by oxidative stress, which leads to free-radical damage of cells, tissues and organs [7]. The pineal gland produces the hormone melatonin. Melatonin (N-acetyl-5-methoxytryptamine), which is better known today as a sleep regulator, performs many functions, revealing great versatility and diversity, as it has antioxidant, anti-inflammatory, anti-apoptotic and other properties [8-10]. The main metabolite of melatonin in urine is 6-sulfatoxymelatonin (6 - SM or aMT6s), which is a reliable surrogate biomarker reflecting the melatonin concentration in blood [11].

Our study found that the level of 6 - SM in the urine of preterm infants with ELBW in the first day of life has its own differences depending on the neonatal period. A significant decrease was determined in infants who had lethal outcomes. According to the literature, many perinatal conditions are characterized by oxidative stress, namely a decrease in the protective capacity of antioxidants against the background of hyperproduction of free radicals [12, 13]. Respiratory distress syndrome, hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, necrotizing enterocolitis, retinopathy of prematurity, intracranial hemorrhage, neonatal sepsis and others are defined among perinatal diseases accompanied by oxidative stress.

It is known that immaturity and reduced adaptive mechanisms in preterm infants are depleted, starting as early as intrauterine, during birth and in the postnatal period of life, due to stress factors such as hypoxia, hyperoxia, reperfusion and inflammation [16]. For a deeper understanding of these processes, we performed a clinical and morphological comparison of the functional and structural features of the pineal gland of the brain in early infants with ELBW.

As a result of its small size, specific location, and multiple functional-anatomical connections with the intermediate brain and endocrine centers, the physiology of the pineal gland is poorly understood in both adults and children. Especially in preterm infants with ELBW. By applying macroscopic, histological, and histochemical methods, we have investigated some features of the structure and function of the pineal gland in infants with ELBW.

Considering that the infants we observed had a gestational age of 25 to 29 weeks, it can be argued that the pineal gland is already functioning during this period of intrauterine maturation. Its function increases with subsequent depletion. The obtained data on the increased morphofunctional activity of pineal cells in deceased infants confirm that this gland plays an extraordinary role in the processes of extraterine adaptation and performs antioxidative protection. The results obtained open up the most important prospects for further research regarding drug supplementation of melatonin to preterm infants from the first day of life with full-scale center-based randomized trials.

Conclusions

1. Urinary excretion of the melatonin 6 metabolite sulfoxymelatonin in preterm infants with extremely low birth weight during the first day of life who had lethal outcomes was significantly reduced compared with surviving children (mean 65.5 pg/ml and 180.6 pg/ml, respectively), indicating in favor of depletion of the functional activity of the pineal gland in perinatal pathology.

2. Morphologically, there is an increase in morphofunctional activity of pineal cells in the brain epithysis of preterm infants with extremely low birth weight, which is confirmed by morphometric data (pinealocyte area 93.4 μm², nucleus area 38.7 μm²) and increased MelanA S100 expression in immunohistochemical study.

3. Chaotically arranged pinealocytes with foci of lysis in the periphery, areas of circulatory disorders, marginal chromatin in the nuclei and forced apoptosis are considered as evidence of compensation for perinatal pathology, which in turn leads to decreased synthesis of melatonin 6 and its mediated metabolite 6 - sulfoxymelatonin excreted with urine.

4. Based on the systematization of predictors of clinical and immunohistochemical compensatory effects of brain epithysis in preterm infants with extremely low birth weight for diagnostic and prognostic nurture monitoring, it is reasonable to use urinary melatonin levels in the early neonatal period.

Prospects for future research. Based on their own published and literature data confirming the crucial role of the epithysis in the neuroendocrine compensation of perinatal pathology, the authors consider it appropriate to direct future scientific clinical studies on the use of melatonin in preterm infants with determination of the effective dose, its duration of administration under control of pineal gland function.

The authors declare no conflict of interest.

Financing sources: self-financing.

The authors express their gratitude to Professor I.I. Yakovtsova.

References

4. Клименко ТМ, Кварацхелія ТМ. Нейроендокринні та морфологічні особливості епіфізарних функцій у доношенних та недоношенних новонароджених у критичних станах. Педіатрія, акушерство та гінекологія. 2004;3:68.

Знижена екскреція 6-сульфоксімелатоніну із сечею у передчасно народжених немовлят з надзвичайно малою масою тіла при народженні. Метаболіти мелатоніну, 6-сульфоксімелатоніна, у передчасно народжених немовлят з надзвичайно малою масою тіла у першу добу життя, які мали летальні наслідки, достовірно зменшена у порівнянні з дітьми, які вижили, що свідчить на користь ключових слов: мелатонін; недоношеність; шишкоподібна залоза.

Резюме

Вступ. В адаптації до постнатального життя і у компенсації найбільш поширеної перинатальної патології передчасно народженних немовлят важлива роль належить функціональній активності шишкоподібної залози.

Мета дослідження. Визначити рівень 6-сульфоксімелатоніну сечі у першу добу життя у передчасно народжених немовлят з надзвичайно малою масою тіла при народженні.

Матеріал і методи дослідження. У 46 передчасно народжених дітей з надзвичайно малою масою тіла визначали рівень метаболіту мелатоніну в сечі 6-сульфоксімелатоніну у першу добу життя. У 20 померлих дітей проводили макропідні дослідження шишкоподібної залози з використанням імуногістохімічного методу.

Результати дослідження. У 46 передчасно народжених дітей з надзвичайно малою масою тіла визначали рівень метаболіту мелатоніну в сечі 6-сульфоксімелатоніну у першу добу життя. У 20 померлих дітей проводили макропідні дослідження шишкоподібної залози з використанням імуногістохімічного методу.

Висновки. Знижена ексреція 6-сульфоксімелатоніну із сечею у передчасно народжених немовлят з надзвичайно малою масою тіла в першу добу життя та морфологічні зміни в епіфізах дітей, що померли, свідчать про виснаждення функціональної активності шишкоподібної залози при перинатальній патології.

Контактна інформація: Тетяна Клименко, Г.А. Кузєнкова

Contact Information:
Tetiana Klymenko – MD, Professor, Head of Neonatology Department of Kharkiv Medical Academy of Postgraduate Education (Kharkiv, Ukraine)
e-mail: klymenko57.1@gmail.com
ORCID ID: http://orcid.org/0000-0001-6936-8557
Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=6701325386
Ganna Kuzenkova – PhD postgraduate, Kharkiv Medical Academy of Postgraduate Education (Kharkiv, Ukraine)
e-mail: annakuzenkova15@gmail.com
ORCID ID: http://orcid.org/0000-0002-2955-730X
© T.M. Klymenko, G.A. Kuzenkova, 2022

Контактна інформація:
Клименко Тетяна Михайлівна – доктор медичних наук, професор, завідувач кафедри неонатології Харківської медичної академії післядипломної освіти (м. Харків, Україна)
e-mail: klymenko57.1@gmail.com
ORCID ID: http://orcid.org/0000-0001-6936-8557
Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=6701325386

Кузєнкова Ганна Аркадіївна – доктор наук, професор, завідувач кафедри неонатології Харківської медичної академії післядипломної освіти (м. Харків, Україна)
e-mail: annakuzenkova15@gmail.com
ORCID ID: http://orcid.org/0000-0002-2955-730X
© T.M. Klymenko, G.A. Kuzenkova, 2022

Надійшло до редакції 10.03.2022 р.
Підписано до друку 16.05.2022 р.